Back to Search Start Over

A Splitting Method for Numerical Simulation of Free Surface Flows of Incompressible Fluids with Surface Tension

Authors :
Yuri V. Vassilevski
Kirill M. Terekhov
Maxim A. Olshanskii
Kirill Nikitin
Source :
Computational Methods in Applied Mathematics. 15:59-77
Publication Year :
2014
Publisher :
Walter de Gruyter GmbH, 2014.

Abstract

The paper studies a splitting method for the numerical time-integration of the system of partial differential equations describing the motion of viscous incompressible fluid with free boundary subject to surface tension forces. The method splits one time step into a semi-Lagrangian treatment of the surface advection and fluid inertia, an implicit update of viscous terms and the projection of velocity into the subspace of divergence-free functions. We derive several conservation properties of the method and a suitable energy estimate for numerical solutions. Under certain assumptions on the smoothness of the free surface and its evolution, this leads to a stability result for the numerical method. Efficient computations of free surface flows of incompressible viscous fluids need several other ingredients, such as dynamically adapted meshes, surface reconstruction and level set function re-initialization. These enabling techniques are discussed in the paper as well. The properties of the method are illustrated with a few numerical examples. These examples include analytical tests and the oscillating droplet benchmark problem.

Details

ISSN :
16099389 and 16094840
Volume :
15
Database :
OpenAIRE
Journal :
Computational Methods in Applied Mathematics
Accession number :
edsair.doi...........8257d18558717a34699ed5390f58bd54
Full Text :
https://doi.org/10.1515/cmam-2014-0025