Back to Search
Start Over
The classical dynamic symmetry for the Sp(1)-Kepler problems
- Source :
- Journal of Mathematical Physics. 58:091702
- Publication Year :
- 2017
- Publisher :
- AIP Publishing, 2017.
-
Abstract
- A Poisson realization of the simple real Lie algebra so*(4n) on the phase space of each Sp(1)-Kepler problem is exhibited. As a consequence, one obtains the Laplace-Runge-Lenz vector for each classical Sp(1)-Kepler problem. The verification of these Poisson realizations is greatly simplified via an idea of Weinstein. The totality of these Poisson realizations is shown to be equivalent to the canonical Poisson realization of so*(4n) on the Poisson manifold T*H*n/Sp(1). (Here H*n≔Hn\{0} and the Hamiltonian action of Sp(1) on T*H*n is induced from the natural right action of Sp(1) on H*n.)
- Subjects :
- 010102 general mathematics
Statistical and Nonlinear Physics
Poisson distribution
01 natural sciences
Poisson bracket
symbols.namesake
Poisson manifold
Phase space
Quantum mechanics
0103 physical sciences
Lie algebra
symbols
010307 mathematical physics
0101 mathematics
Poisson's equation
Hamiltonian (quantum mechanics)
Mathematical Physics
Mathematical physics
Poisson algebra
Mathematics
Subjects
Details
- ISSN :
- 10897658 and 00222488
- Volume :
- 58
- Database :
- OpenAIRE
- Journal :
- Journal of Mathematical Physics
- Accession number :
- edsair.doi...........82426644b9d5d6ddbd8ecdfeb4d6e174