Back to Search Start Over

The Polymorphs of the Na+ Ion Conductor Na3PS4 from the Perspective of Variable Temperature Diffraction and Spectroscopy

Authors :
Mohamed Zbiri
Saiful Islam
Emmanuelle Suard
Houssny Bouyanfif
Theodosios Famprikis
Helen Y. Playford
Olaf J. Borkiewicz
Christian Masquelier
Matthieu Courty
James A. Dawson
Damien Dambournet
Pieremanuele Canepa
Jean-Noël Chotard
François Fauth
Publication Year :
2021
Publisher :
American Chemical Society (ACS), 2021.

Abstract

Solid electrolytes are crucial for next generation solid state batteries and Na3PS4 is one of the most promising Na+ conductors for such applications. In this contribution, we present a detailed investigation of the evolution in structure and dynamics of Na3PS4 under the effect of temperature in the range 30 < T < 600 °C through combined experimental-computational analysis. Although x ray Bragg diffraction experiments indicate a second order phase transition from the tetragonal ground state (α, P-421c) to the cubic polymorph (β, I-43m), pair distribution function analysis in real space and Raman spectroscopy indicate remnants of tetragonal character in the range 250 < T < 500 °C which we attribute to dynamic local tetragonal distortions. The first order phase transition to the mesophasic high temperature polymorph (γ, Fddd) is associated with a sharp volume increase and the onset of liquid like diffusive dynamics for sodium-cations (translative) and thiophosphate-polyanions (rotational) evident by inelastic neutron- and Raman- spectroscopies, as well as pair-distribution function and molecular dynamics. These results shed light on the rich polymorphism in Na3PS4 and are relevant for a host of high performance materials deriving from the Na3PS4 structural archetype.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........81e1ec2e2768e20971974021eecc8ab9