Back to Search
Start Over
Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis
- Source :
- Nonlinear Analysis: Theory, Methods & Applications. 74:5975-5986
- Publication Year :
- 2011
- Publisher :
- Elsevier BV, 2011.
-
Abstract
- The main aim of this paper is to study the global existence of solutions of initial value problems for nonlinear fractional differential equations(FDEs) on the half-axis, which is fundamental in the basic theory of FDEs and important in stability analysis of this kind of equations. In this paper, we are concerned with the nonlinear FDE D 0 + α x ( t ) = f ( t , x ) , t ∈ ( 0 , + ∞ ) , 0 α ≤ 1 , where D 0 + α is the standard Riemann–Liouville fractional derivative, subject to the initial value condition lim t → 0 + t 1 − α x ( t ) = u 0 . By constructing a special Banach space and employing fixed-point theorems, some sufficient conditions are obtained to guarantee the global existence of solutions on the interval [ 0 , + ∞ ) . Moreover, in the case α = 1 , existence results of solutions of initial value problems for ordinary differential equations on the half-axis are also obtained. An interesting example is also included.
Details
- ISSN :
- 0362546X
- Volume :
- 74
- Database :
- OpenAIRE
- Journal :
- Nonlinear Analysis: Theory, Methods & Applications
- Accession number :
- edsair.doi...........803d9ab755f82ea052cae1f028eda5cd
- Full Text :
- https://doi.org/10.1016/j.na.2011.05.074