Back to Search Start Over

Normative Modeling of Brain Morphometry Across the Lifespan using CentileBrain: Algorithm Benchmarking and Model Optimization

Authors :
Ruiyang Ge
Yuetong Yu
Yi Xuan Qi
Yunan Vera Fan
Shiyu Chen
Chuntong Gao
Shalaila S Haas
Amirhossein Modabbernia
Faye New
Ingrid Agartz
Philip Asherson
Rosa Ayesa-Arriola
Nerisa Banaj
Tobias Banaschewski
Sarah Baumeister
Alessandro Bertolino
Dorret I Boomsma
Stefan Borgwardt
Josiane Bourque
Daniel Brandeis
Alan Breier
Henry Brodaty
Rachel M Brouwer
Randy Buckner
Jan K Buitelaar
Dara M Cannon
Xavier Caseras
Simon Cervenka
Patricia J Conrod
Benedicto Crespo-Facorro
Fabrice Crivello
Eveline A Crone
Liewe de Haan
Greig I de Zubicaray
Annabella Di Giorgio
Susanne Erk
Simon E Fisher
Barbara Franke
Thomas Frodl
David C Glahn
Dominik Grotegerd
Oliver Gruber
Patricia Gruner
Raquel E Gur
Ruben C Gur
Ben J Harrison
Sean N Hatton
Ian Hickie
Fleur M Howells
Hilleke E Hulshoff Pol
Chaim Huyser
Terry L Jernigan
Jiyang Jiang
John A Joska
Rene S Kahn
Andrew J Kalnin
Nicole A Kochan
Sanne Koops
Jonna Kuntsi
Jim Lagopoulos
Luisa Lazaro
Irina S Lebedeva
Christine Lochner
Nicholas G Martin
Bernard Mazoyer
Brenna C McDonald
Colm McDonald
Katie L McMahon
Tomohiro Nakao
Lars Nyberg
Fabrizio Piras
Maria J Portella
Jiang Qiu
Joshua L Roffman
Perminder S Sachdev
Nicole Sanford
Andrew J Saykin
Theodore D Satterthwaite
Sophia I Thomopolous
Carl M Sellgren
Kang Sim
Jordan W Smoller
Jair Soares
Iris E Sommer
Gianfranco Spalletta
Dan J Stein
Christian K Tamnes
Alexander S Tomyshev
Theo GM van Erp
Diana Tordesillas-Gutierrez
Julian N Trollor
Dennis van 't Ent
Odile A van den Heuvel
Neeltje EM van Haren
Daniela Vecchio
Dick J Veltman
Dongtao Wei
Henrik Walter
Yang Wang
Bernd Weber
Margaret J Wright
Wei Wen
Lars T Westlye
Lara M Wierenga
Paul M Thompson
Steven CR Williams
Sarah Medland
Mon-Ju Wu
Kevin Yu
Neda Jahanshad
Sophia Frangou
Publication Year :
2023
Publisher :
Cold Spring Harbor Laboratory, 2023.

Abstract

Background: Normative modeling is a statistical approach to quantify the degree to which a particular individual-level measure deviates from the pattern observed in a normative reference population. When applied to human brain morphometric measures it has the potential to inform about the significance of normative deviations for health and disease. Normative models can be implemented using a variety of algorithms that have not been systematically appraised. Methods: To address this gap, eight algorithms were compared in terms of performance and computational efficiency using brain regional morphometric data from 37,407 healthy individuals (53% female; aged 3-90 years) collated from 87 international MRI datasets. Performance was assessed with the mean absolute error (MAE) and computational efficiency was inferred from central processing unit (CPU) time. The algorithms evaluated were Ordinary Least Squares Regression (OLSR), Bayesian Linear Regression (BLR), Generalized Additive Models for Location, Scale, and Shape (GAMLSS), Parametric Lambda, Mu, Sigma (LMS), Gaussian Process Regression (GPR), Warped Bayesian Linear Regression (WBLG), Hierarchical Bayesian Regression (HBR), and Multivariable Fractional Polynomial Regression (MFPR). Model optimization involved testing nine covariate combinations pertaining to acquisition features, parcellation software versions, and global neuroimaging measures (i.e., total intracranial volume, mean cortical thickness, and mean cortical surface area). Findings: Statistical comparisons across models at PFDR

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........7fe9d786ce0a0d311ebe1087145a45ce
Full Text :
https://doi.org/10.1101/2023.01.30.523509