Back to Search Start Over

Electrodeposition of highly porous ZnO nanostructures with hydrothermal amination for efficient photoelectrochemical activity

Authors :
Vidhika Sharma
Sandesh Jadkar
P. Ilaiyaraja
Chandran Sudakar
Mohit Prasad
Source :
International Journal of Hydrogen Energy. 44:11459-11471
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

One step electrodeposition method has been used to realize highly porous ZnO pin hole (ZP) and ZnO rosette sheets (ZS) nanostructure based photo-anodes for efficient photoelectrochemical (PEC) splitting of water. Electrodeposited ZP and ZS based photo-anodes exhibit enhanced photocurrent density of 0.62 mA/cm2 and 0.76 mA/cm2 respectively (at a bias of 0.75 V). Further on hydrothermal amination (A), these electrodeposited ZP and ZS (A-ZP and A-ZS) nanostructure based photo-anodes had shown enhanced photocurrent density of 1.02 mA/cm2 and 1.27 mA/cm2, respectively. Surface morphology, evolution and elemental study were done using FESEM and EDX. Raman spectra of aminated photo-anodes have peaks at ∼270 cm−1 and ∼511 cm−1 related to stretching vibration mode between Zn N and Zn O. The peaks at wave number ∼558 cm−1 and ∼571 cm−1 is due to formation of Zn C bonds and because of complex defects respectively. ZnO exhibits low PEC activity, but on nano-structuring in the form of ZP and ZS improves its light absorption capacity. Hydrothermal amination red shifts (∼25 nm) the absorption band at ∼ 425 nm. The N and C act as electron reservoirs in A-ZP and A-ZS photo-anodes and efficiently separate the photo-generated electron/hole pairs and restrain charge recombination to generate photo-reactive sites. Electrochemical impedance spectroscopy (EIS) revealed that A-ZP and A-ZS had low charge transfer resistance compared to their bare counterparts. This lead to considerably improved PEC performance. An unprecedented increase in IPCE values in A-ZP and A-ZS can be assigned to the decrease in band gap and thereby significant enhancement in photocurrent density. These result in to proper charge segregation and improved charge transportation. The maximum value of IPCE is 9.6% for A-ZS sample and it is also clear that ZP and ZS nanostructured film have higher IPCE values at ∼400 nm than traditional ZnO thin film. A-ZP and A-ZS based photo-anodes have exhibited enhanced PEC performance as evident from IPCE measurements and thus can be a prospective candidate for PEC and optoelectronic applications.

Details

ISSN :
03603199
Volume :
44
Database :
OpenAIRE
Journal :
International Journal of Hydrogen Energy
Accession number :
edsair.doi...........7fe99efb7ace5d93361bcf92f61a26c0
Full Text :
https://doi.org/10.1016/j.ijhydene.2019.03.132