Back to Search Start Over

Anomaly detection in smart grid traffic data for home area network

Authors :
Divya M Menon
N. Radhika
Source :
2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT).
Publication Year :
2016
Publisher :
IEEE, 2016.

Abstract

Strengthening of Smart Grid functionalities has become the need of the 21st Century. Security evolves to be the primary concern at the deployment level of Smart Grids. Cyber security threats and vulnerabilities in Smart grid Network needs to be addressed before the deployment of the Smart Grid. Our proposed intrusion detection scheme identifies anomalies in the Smart Grid traffic and detects attacks like flooding which causes Denial of Service in Smart Grid Networks. This paper applies k-Means algorithm for clustering of traffic data and outlier detection for the data transmitted between utility Centre and the Smart Homes. Performance of the algorithm has been compared with other clustering algorithms and the results were found to have higher percentage in anomaly detection.

Details

Database :
OpenAIRE
Journal :
2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT)
Accession number :
edsair.doi...........7fb97c15854070253b4147adcf8167b9
Full Text :
https://doi.org/10.1109/iccpct.2016.7530186