Back to Search
Start Over
Local well-posedness for boundary layer equations of Euler-Voigt equations in analytic setting
- Source :
- Journal of Differential Equations. 307:1-28
- Publication Year :
- 2022
- Publisher :
- Elsevier BV, 2022.
-
Abstract
- From the formal expansion of the solutions of Euler-Voigt equations in R + 2 with no-slip boundary conditions, the boundary layer equations of Euler-Voigt equations to Euler equations are obtained. In case of the analytic data, one obtains the local existence and uniqueness of the solutions for the boundary layer equations by abstract Cauchy-Kovalevskaya theorem.
Details
- ISSN :
- 00220396
- Volume :
- 307
- Database :
- OpenAIRE
- Journal :
- Journal of Differential Equations
- Accession number :
- edsair.doi...........7fb096bea15645e14654f83a2993c895