Back to Search
Start Over
Optimal convergence of a second-order low-regularity integrator for the KdV equation
- Source :
- IMA Journal of Numerical Analysis. 42:3499-3528
- Publication Year :
- 2021
- Publisher :
- Oxford University Press (OUP), 2021.
-
Abstract
- In this paper, we establish the optimal convergence for a second-order exponential-type integrator from Hofmanová & Schratz (2017, An exponential-type integrator for the KdV equation. Numer. Math., 136, 1117–1137) for solving the Korteweg–de Vries equation with rough initial data. The scheme is explicit and efficient to implement. By rigorous error analysis, we show that the scheme provides second-order accuracy in $H^\gamma $ for initial data in $H^{\gamma +4}$ for any $\gamma \geq 0$, where the regularity requirement is lower than for classical methods. The result is confirmed by numerical experiments, and comparisons are made with the Strang splitting scheme.
- Subjects :
- Applied Mathematics
General Mathematics
Order (ring theory)
010103 numerical & computational mathematics
01 natural sciences
010101 applied mathematics
Computational Mathematics
Strang splitting
Error analysis
Scheme (mathematics)
Integrator
Convergence (routing)
Applied mathematics
0101 mathematics
Korteweg–de Vries equation
Mathematics
Subjects
Details
- ISSN :
- 14643642 and 02724979
- Volume :
- 42
- Database :
- OpenAIRE
- Journal :
- IMA Journal of Numerical Analysis
- Accession number :
- edsair.doi...........7ee228e50dbf9c2d53b36681d4c94065