Back to Search Start Over

A study of a novel Na ion battery and its anodic degradation using sodium rich prussian blue cathode coupled with different titanium based oxide anodes

Authors :
Dong-Ha Lee
Osung Kwon
Alex Bates
Jae Sung Choi
Nicholas David Schuppert
Moon Jong Choi
Santanu Mukherjee
Sam Park
Byungrak Son
Jacek B. Jasinski
Joo Gon Kim
Source :
Journal of Power Sources. 286:276-289
Publication Year :
2015
Publisher :
Elsevier BV, 2015.

Abstract

This paper analyzes the behavior and studies the thermal degradation phenomena of a novel sodium rich Prussian blue cathode with a sodium deficient and sodium rich anode system viz. amorphous TiO2, crystalline (pristine), and heat treated TiO2 and Na2Ti3O7, respectively. The primary aim of the research was to demonstrate the superiority of the Na2Ti3O7 anode, which in principle can be considered “pre-stressed” by Na atoms when converted from TiO2 to Na2Ti3O7. Another motive of the research was to analyze exhaustively the layered anode structure and its degradation phenomena using the unique technique of thermal imaging to correlate it with post cycled X-ray diffraction (XRD) and an AC impedance study. The Na2Ti3O7 system was seen as more stable than the other tested TiO2 based anodes and produced an open circuit voltage (OCV) of 3.59 V and a maximum specific capacity of 92.18 mAh g−1 when the electrolyte used was dissolved in an organic solvent. Under the same conditions, the TiO2 sample showed an OCV of 3.41 V and a maximum specific capacity of 71.93 mAh g−1. Thermal imaging studies show that the maximum electrochemical degradation occurs at the anode of the samples with the TiO2 sample being more susceptible to corrosion.

Details

ISSN :
03787753
Volume :
286
Database :
OpenAIRE
Journal :
Journal of Power Sources
Accession number :
edsair.doi...........7db4c97daf6e9b77a9a82b67db10d8b5
Full Text :
https://doi.org/10.1016/j.jpowsour.2015.03.167