Back to Search Start Over

Learning Theory Estimates via Integral Operators and Their Approximations

Authors :
Steve Smale
Ding-Xuan Zhou
Source :
Constructive Approximation. 26:153-172
Publication Year :
2007
Publisher :
Springer Science and Business Media LLC, 2007.

Abstract

The regression problem in learning theory is investigated with least square Tikhonov regularization schemes in reproducing kernel Hilbert spaces (RKHS). We follow our previous work and apply the sampling operator to the error analysis in both the RKHS norm and the L2 norm. The tool for estimating the sample error is a Bennet inequality for random variables with values in Hilbert spaces. By taking the Hilbert space to be the one consisting of Hilbert-Schmidt operators in the RKHS, we improve the error bounds in the L2 metric, motivated by an idea of Caponnetto and de Vito. The error bounds we derive in the RKHS norm, together with a Tsybakov function we discuss here, yield interesting applications to the error analysis of the (binary) classification problem, since the RKHS metric controls the one for the uniform convergence.

Details

ISSN :
14320940 and 01764276
Volume :
26
Database :
OpenAIRE
Journal :
Constructive Approximation
Accession number :
edsair.doi...........7d6681a89c6b07f4e32e875f59bf37aa
Full Text :
https://doi.org/10.1007/s00365-006-0659-y