Back to Search Start Over

Dysregulated TDP-43 proteostasis perturbs excitability of spinal motor neurons during brainstem-mediated fictive locomotion in zebrafish

Authors :
Kazuhide Asakawa
Hiroshi Handa
Koichi Kawakami
Publication Year :
2023
Publisher :
Cold Spring Harbor Laboratory, 2023.

Abstract

Spinal motor neurons (SMNs) are the primary target of degeneration in amyotrophic lateral sclerosis (ALS). Degenerating motor neurons accumulate cytoplasmic TAR DNA-binding protein 43 (TDP-43) aggregates in most ALS cases. This SMN pathology can occur without mutation in the coding sequence of the TDP-43-encoding gene, TARDBP. Whether and how wild-type TDP-43 drives pathological changes in SMNs in vivo remain largely unexplored. In this study, we develop a two-photon calcium imaging setup in which tactile-evoked neural responses of motor neurons in the brainstem and spinal cord can be monitored using the calcium indicator GCaMP. We devise a piezo-assisted tactile stimulator that reproducibly evokes a brainstem descending neuron upon tactile stimulation of the head. A direct comparison between caudal primary motor neurons (CaPs) with or without TDP-43 overexpression in contiguous spinal segments demonstrates that CaPs overexpressing TDP-43 display attenuated Ca2+transients during fictive escape locomotion evoked by the tactile stimulation. These results show that excessive amounts of TDP-43 protein reduce the neuronal excitability of SMNs and potentially contribute to asymptomatic pathological lesions of SMNs and movement disorders in patients with ALS.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........7cabffffbe7809d86f4169db69a486f0