Back to Search
Start Over
Upgrading earth-abundant biomass into three-dimensional carbon materials for energy and environmental applications
- Source :
- Journal of Materials Chemistry A. 7:4217-4229
- Publication Year :
- 2019
- Publisher :
- Royal Society of Chemistry (RSC), 2019.
-
Abstract
- The “trash to treasure” process has been extensively demonstrated for various energy and environmental issues in the past few decades. Abundant biomass is well accepted as a carbon-rich, sustainable, and renewable precursor, offering us a plethora of possibilities for advanced materials for energy conversion and storage as well as environmental treatments; spatial modification of biomass facilitates the formation of a unique three-dimensional (3D) structure with micro- to macropores, yielding higher surface area and enhanced physicochemical properties. This novel concept provides sufficient reaction sites, excellent adsorption capability, more activated sites for catalyst doping, and fascinating electrochemical performance. Basically, the 3D cadre of biomass-derived carbon strengthens the economic competitiveness of these materials and broadens their applications in fields such as in supercapacitors, chemical batteries, bioenergy harvest, adsorbents for organic pollutants and greenhouse gases, and efficient (photo)catalysts. The scope of this review mainly focuses on the most popular synthesis methodology of three-dimensional carbon materials derived from biomass and their critical applications in the fields of energy and environment.
- Subjects :
- Supercapacitor
Renewable Energy, Sustainability and the Environment
business.industry
Environmental engineering
chemistry.chemical_element
Biomass
02 engineering and technology
General Chemistry
021001 nanoscience & nanotechnology
Renewable energy
Adsorption
chemistry
Bioenergy
Greenhouse gas
Environmental science
Energy transformation
General Materials Science
0210 nano-technology
business
Carbon
Subjects
Details
- ISSN :
- 20507496 and 20507488
- Volume :
- 7
- Database :
- OpenAIRE
- Journal :
- Journal of Materials Chemistry A
- Accession number :
- edsair.doi...........7c58633efcfdc55c9783b41c40b3d8aa
- Full Text :
- https://doi.org/10.1039/c8ta12159a