Back to Search
Start Over
CoW metallization for high strength bonding to both sintered Ag joints and encapsulation resins
- Source :
- Journal of Materials Science: Materials in Electronics. 30:11151-11163
- Publication Year :
- 2019
- Publisher :
- Springer Science and Business Media LLC, 2019.
-
Abstract
- One of the applications of wide band gap semiconductors is high temperature operation. That application requires high temperature compatible (i) joining materials such as sinter Ag, (ii) encapsulation resins such as imide type primers or molding compounds, and (iii) metallization for those materials. Ag metallization, the best candidate metallization for sinter Ag materials, has difficulty in bonding to encapsulation resins. Conversely, Ni/Au-flash metallization enables strong resin adhesion but also demonstrates poor reliability for sintered Ag joints. There is no single metallization compatible to both sintered Ag and encapsulation resin for high temperature application. This paper reports on a single metallization, electroless plated CoW metallization, which has demonstrated the capability to achieve both (i) high-temperature reliability (250 °C for 500 h) for sintered Ag joints and (ii) high-temperature adhesion (at 225 °C) for encapsulation resins. Such results have not been achieved with either Ag or Au metallization. The shear strength of sintered Ag joints on CoW metallization exceeded 40 MPa. TEM observation revealed excellent bonding between the sintered Ag and the metal Co of the CoW metallization. Furthermore, CoW metallization also showed strong resin adhesion (about 21 MPa) at 225 °C. XPS analysis identified metal Co for bonding to sinter Ag and, Co(OH)2 and WOx for bonding to resin on the top surface of CoW metallization layer. The foregoing results indicate that CoW may well represent a new metallization process for the fabrication of high reliability and high-temperature compatible SiC power modules.
- Subjects :
- 010302 applied physics
Fabrication
Materials science
Wide-bandgap semiconductor
Condensed Matter Physics
01 natural sciences
Atomic and Molecular Physics, and Optics
Electronic, Optical and Magnetic Materials
Metal
X-ray photoelectron spectroscopy
visual_art
Power module
0103 physical sciences
visual_art.visual_art_medium
Electrical and Electronic Engineering
Composite material
Subjects
Details
- ISSN :
- 1573482X and 09574522
- Volume :
- 30
- Database :
- OpenAIRE
- Journal :
- Journal of Materials Science: Materials in Electronics
- Accession number :
- edsair.doi...........7bcd5a8963581d46fa9db532d5b86831
- Full Text :
- https://doi.org/10.1007/s10854-019-01458-y