Back to Search Start Over

V-Band, Near-IR, and TiO Photometry of the Semi-Regular Red Supergiant TV Geminorum: Long-Term Quasi-Periodic Changes in Temperature, Radius, and Luminosity

Authors :
Richard Wasatonic
Allyn J. Durbin
Edward F. Guinan
Source :
Publications of the Astronomical Society of the Pacific. 127:1010-1020
Publication Year :
2015
Publisher :
IOP Publishing, 2015.

Abstract

Seventeen years of V-band and intermediate Wing near-IR TiO (λ719-nm to λ1024-nm) time-series photometry of the M1-4 Iab supergiant TV Geminorum are presented. The observations were conducted from 1997 to 2014 with the primary goals of determining both long-term (years) and short-term (months) periodicities and estimating temporal changes in temperature, luminosity, and radius as the star varies in brightness. Our results suggest a dominant short-term V-band period of ~411 days (~1.12 years) that is superimposed on a long-term cycle of ~3137 days (~8.59 years). Over this long-term cycle, the effective temperature varies between ~3500 K to ~3850 K and, at an adopted distance of 1.5 ± 0.2 kpc, the luminosity varies from ~6.2 × 104 L⊙ to ~8.9 × 104 L⊙ and the radius varies from ~620 R⊙ to ~710 R⊙. Variations in temperature and luminosity are indicative of a semi-regular long-term pulsation with imposed short-term periods similar to the V-band variations. However, the calculated radius variations are apparently not generally inversely correlated with respect to the long-term temperature and luminosity changes as typically found in Cepheids and Mira-type variables. This observation suggests other undetermined mechanisms, such as the formation and subsequent dissipation of supergranules or possible complex pulsations, are taking place in this evolved red supergiant to account for these variations. Like other young, massive luminous red supergiants such as Betelgeuse (α Orionis) and Antares (α Scorpii), TV Gem shows complicated light variations on time scales that range from months to several years. These evolved high massive stars are important to study because they are nearby, bright progenitors of core-collapsed Type II supernovae.

Details

ISSN :
15383873 and 00046280
Volume :
127
Database :
OpenAIRE
Journal :
Publications of the Astronomical Society of the Pacific
Accession number :
edsair.doi...........7bc53eecd69cf8e1643f0e33ac07f09c