Back to Search Start Over

Borel-Écalle Resummation of a Two-Point Function

Authors :
Pierre J. Clavier
Source :
Annales Henri Poincaré. 22:2103-2136
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

We provide an overview of the tools and techniques of resurgence theory used in the Borel-Ecalle resummation method, which we then apply to the massless Wess–Zumino model. Starting from already known results on the anomalous dimension of the Wess–Zumino model, we solve its renormalisation group equation for the two-point function in a space of formal series. We show that this solution is 1-Gevrey and that its Borel transform is resurgent. The Schwinger–Dyson equation of the model is then used to prove an asymptotic exponential bound for the Borel transformed two-point function on a star-shaped domain of a suitable ramified complex plane. This proves that the two-point function of the Wess–Zumino model is Borel-Ecalle summable.

Details

ISSN :
14240661 and 14240637
Volume :
22
Database :
OpenAIRE
Journal :
Annales Henri Poincaré
Accession number :
edsair.doi...........7a486840ed76835002dec1f7a3cd76df
Full Text :
https://doi.org/10.1007/s00023-021-01057-w