Back to Search
Start Over
Onsager’s Conjecture for the Incompressible Euler Equations in the Hölog Spaces $$C^{0,\alpha }_{\lambda }(\bar{\Omega })$$
- Source :
- Journal of Mathematical Fluid Mechanics. 22
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- In this note we extend a 2018 result of Bardos and Titi (Arch Ration Mech Anal 228(1):197–207, 2018) to a new class of functional spaces $$C^{0,\alpha }_{\lambda }(\bar{\Omega })$$ . It is shown that weak solutions $$\,u\,$$ satisfy the energy equality provided that $$u\in L^3((0,T);C^{0,\alpha }_{\lambda }(\bar{\Omega }))$$ with $$\alpha \ge \frac{1}{3}$$ and $$\lambda >0$$ . The result is new for $$\,\alpha =\,\frac{1}{3}.$$ Actually, a quite stronger result holds. For convenience we start by a similar extension of a 1994 result of Constantin and Titi (Commun Math Phys 165:207–209, 1994), in the space periodic case. The proofs follow step by step those of the above authors. For the readers convenience, and completeness, proofs are presented in a quite complete form.
- Subjects :
- Physics
Conjecture
Applied Mathematics
010102 general mathematics
Condensed Matter Physics
Lambda
Space (mathematics)
01 natural sciences
Omega
010101 applied mathematics
Combinatorics
Computational Mathematics
Alpha (programming language)
Incompressible euler equations
0101 mathematics
Mathematical Physics
Energy (signal processing)
Bar (unit)
Subjects
Details
- ISSN :
- 14226952 and 14226928
- Volume :
- 22
- Database :
- OpenAIRE
- Journal :
- Journal of Mathematical Fluid Mechanics
- Accession number :
- edsair.doi...........79889da0ab4337705e82a3892d4a492e
- Full Text :
- https://doi.org/10.1007/s00021-020-0489-3