Back to Search Start Over

Onsager’s Conjecture for the Incompressible Euler Equations in the Hölog Spaces $$C^{0,\alpha }_{\lambda }(\bar{\Omega })$$

Authors :
Hugo Beirão da Veiga
Jiaqi Yang
Source :
Journal of Mathematical Fluid Mechanics. 22
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

In this note we extend a 2018 result of Bardos and Titi (Arch Ration Mech Anal 228(1):197–207, 2018) to a new class of functional spaces $$C^{0,\alpha }_{\lambda }(\bar{\Omega })$$ . It is shown that weak solutions $$\,u\,$$ satisfy the energy equality provided that $$u\in L^3((0,T);C^{0,\alpha }_{\lambda }(\bar{\Omega }))$$ with $$\alpha \ge \frac{1}{3}$$ and $$\lambda >0$$ . The result is new for $$\,\alpha =\,\frac{1}{3}.$$ Actually, a quite stronger result holds. For convenience we start by a similar extension of a 1994 result of Constantin and Titi (Commun Math Phys 165:207–209, 1994), in the space periodic case. The proofs follow step by step those of the above authors. For the readers convenience, and completeness, proofs are presented in a quite complete form.

Details

ISSN :
14226952 and 14226928
Volume :
22
Database :
OpenAIRE
Journal :
Journal of Mathematical Fluid Mechanics
Accession number :
edsair.doi...........79889da0ab4337705e82a3892d4a492e
Full Text :
https://doi.org/10.1007/s00021-020-0489-3