Back to Search
Start Over
An autoregressive model to describe fishing vessel movement and activity
- Source :
- Environmetrics. 26:17-28
- Publication Year :
- 2014
- Publisher :
- Wiley, 2014.
-
Abstract
- The understanding of the dynamics of fishing vessels is of great interest to characterize the spatial distribution of the fishing effort and to define sustainable fishing strategies. It is also a prerequisite for anticipating changes in fishermen's activity in reaction to management rules, economic context, or evolution of exploited resources. Analyzing the trajectories of individual vessels offers promising perspectives to describe the activity during fishing trips. A hidden Markov model with two behavioral states (steaming and fishing) is developed to infer the sequence of non-observed fishing vessel behavior along the vessel trajectory based on Global Positioning System (GPS) records. Conditionally to the behavior, vessel velocity is modeled with an autoregressive process. The model parameters and the sequence of hidden behavioral states are estimated using an expectation–maximization algorithm, coupled with the Viterbi algorithm that captures the most credible joint sequence of hidden states. A simulation approach was performed to assess the influence of contrast between the model parameters and of the path length on the estimation performances. The model was then fitted to four original GPS tracks recorded with a time step of 15 min derived from volunteer fishing vessels operating in the Channel within the IFREMER RECOPESCA project. Results showed that the fishing activity performed influenced the estimates of the velocity process parameters. Results also suggested future inclusion of variables such as tide currents within the ecosystem approach of fisheries. Copyright © 2014 John Wiley & Sons, Ltd.
- Subjects :
- 0106 biological sciences
Statistics and Probability
business.industry
Computer science
010604 marine biology & hydrobiology
Ecological Modeling
Fishing
Viterbi algorithm
010603 evolutionary biology
01 natural sciences
symbols.namesake
Autoregressive model
Statistics
Global Positioning System
Trajectory
Econometrics
symbols
14. Life underwater
business
Baum–Welch algorithm
Hidden Markov model
Communication channel
Subjects
Details
- ISSN :
- 11804009
- Volume :
- 26
- Database :
- OpenAIRE
- Journal :
- Environmetrics
- Accession number :
- edsair.doi...........77215864e3dca2f5c75439578cc491d4