Back to Search Start Over

Performance analysis of Otsu thresholding for sign language segmentation

Authors :
Zheng Yu Tan
Shafriza Nisha Basah
Haniza Yazid
Muhammad Juhairi Aziz Safar
Source :
Multimedia Tools and Applications. 80:21499-21520
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

Sign language recognition system generally consists of three main processes, which are segmentation, modelling, and classification. Image segmentation plays a crucial role as the initial step in sign language recognition. Despite the many sign language recognition system algorithms proposed in the literature and their well-understood usage, their performance analyses are relatively limited. As such, the main motivation of this paper is to critically analyse the feasibility of successful sign language segmentation under variation of dynamic scene parameters such as noise, hand size, and intensity difference between hand and background. The focus is on image thresholding using Otsu technique, since it is the most commonly used in initial process of sign language segmentation. The analysis of this work was developed based on Monte Carlo statistical method, which showed that the success of sign language segmentation depends on hand size, hand background intensity difference, and noise measurement. The result showed that the sign alphabets with handheld shape like A, E, I, M, N, S, and T is easier to segment, while sign alphabets with finger-extend shape like C, D, F, G, H, K, L, P, R, U, V, W, and Y is harder to segment. Experiment using real images demonstrate the capability of the conditions to correctly predict the outcome of sign language segmentation using Otsu technique. In conclusion, the success of sign language segmentation could be predicted beforehand with obtainable scene parameters.

Details

ISSN :
15737721 and 13807501
Volume :
80
Database :
OpenAIRE
Journal :
Multimedia Tools and Applications
Accession number :
edsair.doi...........76ea11eccb5d60f08db50ec0bf90da7e