Back to Search
Start Over
Chemical changes in soil with use of pelletized organomineral fertilizer made from biosolids and sugarcane filter cake
- Source :
- JANUARY 2021. :67-72
- Publication Year :
- 2021
- Publisher :
- Southern Cross Publishing, 2021.
-
Abstract
- Soil fertility has become an interconnected aspect of modern agriculture, incorporating factors such as nutrient availability from soil, and its revision has become necessary for ensuring sustainability. Therefore, to understand the solubility of nutrients from organomineral fertilizers pelleted with biosolids and sugarcane filter cake, and to evaluate the resulting chemical changes in soil from its use, an experiment was performed in a completely randomized design. The experiment was done with four replicates in a 3 × 5 +1 factorial scheme, using three fertilizer sources (mineral fertilizer, organomineral fertilizer pelletized with biosolids, and organomineral fertilizer pelletized with the filter cake); five doses (60%, 80%, 100%, 120%, and 140% of the recommended dose of fertilization for corn); and an additional control treatment (absence of fertilization). The formulation of the organomineral fertilizers was 5-17-10 with 10% total organic carbon. All fertilizer sources were packed in a microfiber cloth positioned 1 cm below the surface of the soil and incubated for 60 days. Subsequent evaluation of chemical attributes: pH H2O (1:2.5); pH SMP (Shoemaker-McLean-Pratt); and the content of exchangeable aluminum, phosphorus, potassium, calcium, magnesium, silica, and organic matter within the soil was done. Organomineral fertilizers pelleted with biosolids or filter cake do not acidify the soil, but they were found to reduce aluminum saturation and promote a slow release of nutrients, which allowed a more balanced base in the soil. This then ensured a better balance of nutrients, with greater cation exchange capacity, base sums, and base saturation. The use of these fertilizers can contribute to stabilizing the pH of the soil with fewer applications of acidity correctives
Details
- ISSN :
- 18352707 and 18352693
- Database :
- OpenAIRE
- Journal :
- JANUARY 2021
- Accession number :
- edsair.doi...........76b3d7d5819698ae4852f37ce1a524b1