Back to Search Start Over

Outlier Detection using Generalized Linear Model in Malaysian Breast Cancer Data

Authors :
M. Nawama
Mohd. Sahar Yahya
Ibrahim Mohamed
Adriana Irawati Nur Ibrahim
Nur Aishah Taib
Source :
Sains Malaysiana. 44:1417-1422
Publication Year :
2015
Publisher :
Penerbit Universiti Kebangsaan Malaysia (UKM Press), 2015.

Abstract

We consider the problem of outlier detection in bivariate exponential data fitted using the generalized linear model via Bayesian approach. We follow closely the work outlined by Unnikrishnan (2010) and present every step of the detection procedure in details. Due to the complexity of the resulting joint posterior distribution, we obtain the information on the posterior distribution from samples generated by Markov Chain Monte Carlo sampling, in particular, using either the Gibbs sampler or the Metropolis-Hastings algorithm. We use local breast cancer patients’ data to illustrate the implementation of the method.

Details

ISSN :
01266039
Volume :
44
Database :
OpenAIRE
Journal :
Sains Malaysiana
Accession number :
edsair.doi...........7694908fd1e3ff5465fe038ca46aa44b
Full Text :
https://doi.org/10.17576/jsm-2015-4410-06