Back to Search Start Over

Channel Estimation and User Identification With Deep Learning for Massive Machine-Type Communications

Authors :
Jinhong Yuan
Milutin Pajovic
Weijie Yuan
Bryan Liu
Zhiqiang Wei
Source :
IEEE Transactions on Vehicular Technology. 70:10709-10722
Publication Year :
2021
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2021.

Abstract

In this paper, we investigate the detection problem for a massive machine-type communication (mMTC) system that has correlated user activities. Two deep learning assisted algorithms are proposed to exploit the user activity correlation to facilitate channel estimation and user identification. Due to the dependency among user activities, conventional element-wise minimum mean square error (MMSE) denoiser used in the orthogonal approximate message passing (OAMP) algorithm cannot achieve satisfying performance during the two-step iterative process. Therefore, we propose a deep learning modified OAMP (DL-mOAMP) algorithm, which iteratively modifies the user activity ratio via exploiting the user activity correlation in the MMSE denoiser based on the estimated sequence during each OAMP iteration. Moreover, given a specific false alarm probability, a constant threshold employed in the conventional user identification is not optimal in the presence of user activity correlation. Thus, we propose a neural network framework that is dedicated to the user identification (DL-mOAMP-UI algorithm), which minimizes the missed detection probability under a pre-determined false alarm probability. Numerical results show that the proposed DL-mOAMP algorithm provides a substantial mean squared error performance gain compared to the conventional OAMP algorithm and the DL-mOAMP-UI algorithm can further improve the user identification accuracy of an mMTC system.

Details

ISSN :
19399359 and 00189545
Volume :
70
Database :
OpenAIRE
Journal :
IEEE Transactions on Vehicular Technology
Accession number :
edsair.doi...........764f9976c037c22d791e691917f64c37