Back to Search
Start Over
Gas hydrate concentration and characteristics within Hydrate Ridge inferred from multicomponent seismic reflection data
- Source :
- Journal of Geophysical Research. 112
- Publication Year :
- 2007
- Publisher :
- American Geophysical Union (AGU), 2007.
-
Abstract
- [1] A seismic experiment composed of streamer and ocean bottom seismometer (OBS) surveys was conducted in the summer of 2002 at southern Hydrate Ridge, offshore Oregon, to map the gas hydrate distribution within the hydrate stability zone. Gas hydrate concentrations within the reservoir can be estimated with P wave velocity (Vp); however, we can further constrain gas hydrate concentrations using S wave velocity (Vs), and use Vs through its relationship to Vp (Vp/Vs) to reveal additional details such as gas hydrate form within the matrix (i.e., hydrate cements the grains, becomes part of the matrix frame or floats in pore space). Both Vp and Vs can be derived simultaneously by inverting multicomponent seismic data. In this study, we use OBS data to estimate seismic velocities where both gas hydrate and free gas are present in the shallow sediments. Once Vp and Vs are estimated, they are simultaneously matched with modeled velocities to estimate the gas hydrate concentration. We model Vp using an equation based on a modification of Wood's equation that incorporates an appropriate rock physics model and Vs using an empirical relation. The gas hydrate concentration is estimated to be up to 7% of the rock volume, or 12% of the pore space. However, Vp and Vs do not always fit the model simultaneously. Vp can vary substantially more than Vs. Thus we conclude that a model, in which higher concentrations of hydrate do not affect shear stiffness, is more appropriate. Results suggest gas hydrates form within the pore space of the sediments and become part of the rock framework in our survey area.
- Subjects :
- Seismometer
Atmospheric Science
Ecology
Hydrate Ridge
Clathrate hydrate
P wave
Paleontology
Soil Science
Mineralogy
Forestry
Aquatic Science
Oceanography
Geophysics
Shear (geology)
Space and Planetary Science
Geochemistry and Petrology
S-wave
Earth and Planetary Sciences (miscellaneous)
Submarine pipeline
Hydrate
Geology
Earth-Surface Processes
Water Science and Technology
Subjects
Details
- ISSN :
- 01480227
- Volume :
- 112
- Database :
- OpenAIRE
- Journal :
- Journal of Geophysical Research
- Accession number :
- edsair.doi...........76012824096769bf9d18ea6be2625bd6
- Full Text :
- https://doi.org/10.1029/2007jb004993