Back to Search
Start Over
Reduction of Emission Gas Concentration from Coal Based Thermal Power Plant using Full Combustion and Partial Oxidation System
- Source :
- Journal of Engineering Research.
- Publication Year :
- 2021
- Publisher :
- Elsevier BV, 2021.
-
Abstract
- Rapid growth in industrialization has led to high dependency of reliable electric power source for its operation. On the contrary, thermal power plants expel pollutants consisting of hazardous gases that result in degradation of environment and ecosystem. Thus, utmost importance is to generate clean and efficient energy from power plant. This current article resolves the problem of sustainable power production using coal-based thermal power plants, by integrating gasification technologies to the system. The performance of thermal power plant in terms of emission is numerically analyzed with varying gasifier pressure, air-fuel ratio, steam-fuel ratio and flue gas-fuel ratio. Numerical simulation of the gasification cycle with varying parameters is carried out using MATLAB. Optimum performance at gasifier pressure of 2 bar and the steam-fuel ratio of 0.25 was observed with relative air-fuel of 0.075. With increasing flue gas-fuel ratio from 0.25 to 1.00, although the mole fractions of components of syngas don’t differ much, the heating value and cold-gas efficiency of syngas produced decreases for each fuel. Considering the emissions, simulated results present co-gasification as better option over conventional systems. A reduction of two-third in kg of CO2 released per kg of fuel was observed with almost three-fourth decrement in kg of CO2 per kWh of power produced. Also, zero SOx and NOx emissions were observed compared to coal based thermal power plants. It is noted that optimum performance of gasification system at gasifier pressure of 2 bar, air-fuel ratio of 0.1, steam-fuel ratio of 0.25 and flue gas-fuel ratio of 1.00. The proposed cycle presents itself suitable for further research and its application to coal based thermal power plants, providing potential towards supplementary power generation and cleaner exhaust. This research would also significantly contribute to achieve sustainable development goals.
Details
- ISSN :
- 23071885 and 23071877
- Database :
- OpenAIRE
- Journal :
- Journal of Engineering Research
- Accession number :
- edsair.doi...........75407a8c49086189ad73c560efb5d2ae