Back to Search
Start Over
Computing a categorical Gromov–Witten invariant
- Source :
- Compositio Mathematica. 156:1275-1309
- Publication Year :
- 2020
- Publisher :
- Wiley, 2020.
-
Abstract
- We compute the $g=1$, $n=1$ B-model Gromov–Witten invariant of an elliptic curve $E$ directly from the derived category $\mathsf{D}_{\mathsf{coh}}^{b}(E)$. More precisely, we carry out the computation of the categorical Gromov–Witten invariant defined by Costello using as target a cyclic $\mathscr{A}_{\infty }$ model of $\mathsf{D}_{\mathsf{coh}}^{b}(E)$ described by Polishchuk. This is the first non-trivial computation of a positive-genus categorical Gromov–Witten invariant, and the result agrees with the prediction of mirror symmetry: it matches the classical (non-categorical) Gromov–Witten invariants of a symplectic 2-torus computed by Dijkgraaf.
- Subjects :
- Pure mathematics
Algebra and Number Theory
Computation
010102 general mathematics
01 natural sciences
Elliptic curve
0103 physical sciences
Gromov–Witten invariant
010307 mathematical physics
0101 mathematics
Invariant (mathematics)
Mirror symmetry
Categorical variable
Mathematics
Symplectic geometry
Subjects
Details
- ISSN :
- 15705846 and 0010437X
- Volume :
- 156
- Database :
- OpenAIRE
- Journal :
- Compositio Mathematica
- Accession number :
- edsair.doi...........74b970b0ba69376a651cc143a5e3e7ca
- Full Text :
- https://doi.org/10.1112/s0010437x20007174