Back to Search Start Over

Computing a categorical Gromov–Witten invariant

Authors :
Andrei Caldararu
Junwu Tu
Source :
Compositio Mathematica. 156:1275-1309
Publication Year :
2020
Publisher :
Wiley, 2020.

Abstract

We compute the $g=1$, $n=1$ B-model Gromov–Witten invariant of an elliptic curve $E$ directly from the derived category $\mathsf{D}_{\mathsf{coh}}^{b}(E)$. More precisely, we carry out the computation of the categorical Gromov–Witten invariant defined by Costello using as target a cyclic $\mathscr{A}_{\infty }$ model of $\mathsf{D}_{\mathsf{coh}}^{b}(E)$ described by Polishchuk. This is the first non-trivial computation of a positive-genus categorical Gromov–Witten invariant, and the result agrees with the prediction of mirror symmetry: it matches the classical (non-categorical) Gromov–Witten invariants of a symplectic 2-torus computed by Dijkgraaf.

Details

ISSN :
15705846 and 0010437X
Volume :
156
Database :
OpenAIRE
Journal :
Compositio Mathematica
Accession number :
edsair.doi...........74b970b0ba69376a651cc143a5e3e7ca
Full Text :
https://doi.org/10.1112/s0010437x20007174