Back to Search
Start Over
Liouville theorem for the nonlinear Poisson equation on manifolds
- Source :
- Journal of Mathematical Analysis and Applications. 416:800-804
- Publication Year :
- 2014
- Publisher :
- Elsevier BV, 2014.
-
Abstract
- In this note, we study a Modica type gradient estimate for smooth solutions to general non-linear Poisson equation Δ u − f ( u ) = 0 , in M n , u : M n → R where ( M , g ) is a complete Riemannian manifold with bounded geometry and non-negative Ricci curvature and f is the derivative of the non-negative smooth function F ( u ) on R. Then we use this gradient estimate to conclude a Liouville theorem.
- Subjects :
- Applied Mathematics
010102 general mathematics
Mathematical analysis
Derivative
Riemannian manifold
Type (model theory)
01 natural sciences
Nonlinear poisson equation
Uniqueness theorem for Poisson's equation
Bounded function
0103 physical sciences
Mathematics::Differential Geometry
010307 mathematical physics
0101 mathematics
Poisson's equation
Analysis
Ricci curvature
Mathematical physics
Mathematics
Subjects
Details
- ISSN :
- 0022247X
- Volume :
- 416
- Database :
- OpenAIRE
- Journal :
- Journal of Mathematical Analysis and Applications
- Accession number :
- edsair.doi...........747ca3fcccf6c99ef7260fb18d2c6e99
- Full Text :
- https://doi.org/10.1016/j.jmaa.2014.03.005