Back to Search Start Over

Liouville theorem for the nonlinear Poisson equation on manifolds

Authors :
Li Ma
Ingo Witt
Source :
Journal of Mathematical Analysis and Applications. 416:800-804
Publication Year :
2014
Publisher :
Elsevier BV, 2014.

Abstract

In this note, we study a Modica type gradient estimate for smooth solutions to general non-linear Poisson equation Δ u − f ( u ) = 0 , in M n , u : M n → R where ( M , g ) is a complete Riemannian manifold with bounded geometry and non-negative Ricci curvature and f is the derivative of the non-negative smooth function F ( u ) on R. Then we use this gradient estimate to conclude a Liouville theorem.

Details

ISSN :
0022247X
Volume :
416
Database :
OpenAIRE
Journal :
Journal of Mathematical Analysis and Applications
Accession number :
edsair.doi...........747ca3fcccf6c99ef7260fb18d2c6e99
Full Text :
https://doi.org/10.1016/j.jmaa.2014.03.005