Back to Search
Start Over
Two-phase damage detection of beam structures under moving load using multi-scale wavelet signal processing and wavelet finite element model
- Source :
- Applied Mathematical Modelling. 66:728-744
- Publication Year :
- 2019
- Publisher :
- Elsevier BV, 2019.
-
Abstract
- This paper proposes a damage detection method with two phases, namely, localization and quantification, for beam structures subjected to moving load and successfully validates it via a laboratory experiment. Firstly, the discrete wavelet transform (DWT) is applied to decompose the displacement response change induced by a moving vehicle and locate potential structural damages. Then adaptive-scale wavelet finite element model (WFEM) updating is employed to estimate the damage severity in the identified damage regions in a progressive fashion. The elemental scales of WFEM are adaptively changed according to not only the moving vehicle position but also the progressively identified damage regions. Such a method can effectively minimize the number of modeling degree-of-freedoms (DOFs) and updating parameters during optimization. The feasibility and effectiveness of the proposed method is examined through a laboratory experiment with different damage scenarios. The results indicate the proposed method can achieve good consistency between structural modeling, damage scenarios, and load conditions, as well as an optimal tradeoff between damage detection accuracy and efficiency.
- Subjects :
- Discrete wavelet transform
Signal processing
Computer science
Applied Mathematics
Moving load
02 engineering and technology
01 natural sciences
Finite element method
Displacement (vector)
020303 mechanical engineering & transports
Wavelet
0203 mechanical engineering
Position (vector)
Modeling and Simulation
0103 physical sciences
010301 acoustics
Algorithm
Beam (structure)
Subjects
Details
- ISSN :
- 0307904X
- Volume :
- 66
- Database :
- OpenAIRE
- Journal :
- Applied Mathematical Modelling
- Accession number :
- edsair.doi...........7461abcb256d76cf2d501920424f01fd
- Full Text :
- https://doi.org/10.1016/j.apm.2018.10.005