Back to Search
Start Over
On stability of rotordynamic systems with rotor–stator contact interaction
- Source :
- Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 464:3353-3375
- Publication Year :
- 2008
- Publisher :
- The Royal Society, 2008.
-
Abstract
- In machine systems where a rotor spins within a finite clearance space supported by bearings, contact between the rotor and its surround can result in persistent coupled vibration of the rotor and stator. When the vibration response is driven predominantly by friction forces, rotordynamic stability becomes a serious issue. This paper introduces a theory for model-based verification of dynamic stability in rotor systems with stator contact and rub. Generalized multi-degree-of-freedom linear models of rotor and stator lateral vibration are considered, combined with contact models that account for finite clearance and Coulomb friction. State-space conditions for global stability as well as stability of contact-free synchronous whirl responses are derived using Lyapunov's direct method. This leads to feasibility problems involving matrix inequalities that can be quickly verified using numerical routines for convex optimization. Parametric studies involving flexible rotor models indicate that tight bounds on regions of stability can be obtained. A case study involving a realistic machine model illustrates how design optimization based on the theory might be used to overcome instability problems in real machines.
- Subjects :
- Lyapunov function
Engineering
business.industry
Rotor (electric)
Stator
General Mathematics
General Engineering
Stability (learning theory)
General Physics and Astronomy
Instability
law.invention
Quantitative Biology::Subcellular Processes
Vibration
symbols.namesake
Control theory
law
Convex optimization
symbols
business
Parametric statistics
Subjects
Details
- ISSN :
- 14712946 and 13645021
- Volume :
- 464
- Database :
- OpenAIRE
- Journal :
- Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
- Accession number :
- edsair.doi...........70c0520518f8dbcce85123ac1accf84f