Back to Search
Start Over
Matched asymptotic expansion approach to pulse dynamics for a three-component reaction–diffusion system
- Source :
- Journal of Differential Equations. 303:482-546
- Publication Year :
- 2021
- Publisher :
- Elsevier BV, 2021.
-
Abstract
- We study the existence and stability of standing pulse solutions to a singularly perturbed three-component reaction–diffusion system with one activator and two inhibitors. We apply the MAE (matched asymptotic expansion) method to construct solutions and the SLEP (singular limit eigenvalue problem) method to evaluate their stability. This approach is not just an alternative approach to geometric singular perturbation and the associated Evans function, it also yields two advantages: one is extendability to higher dimensional cases, and the other is that it allows us to obtain more precise information about the behaviors of critical eigenvalues. This implies the existence of codimension-two singularities of drift and Hopf bifurcations for the standing pulse solution. Moreover, it is numerically confirmed that stable standing and traveling breathers emerge around the singularity in a physically acceptable region.
Details
- ISSN :
- 00220396
- Volume :
- 303
- Database :
- OpenAIRE
- Journal :
- Journal of Differential Equations
- Accession number :
- edsair.doi...........6ff5c08290b41be4bf3489f83ac3e2ab