Back to Search
Start Over
A Visual Analysis Approach for Community Detection of Multi-Context Mobile Social Networks
- Source :
- Journal of Computer Science and Technology. 28:797-809
- Publication Year :
- 2013
- Publisher :
- Springer Science and Business Media LLC, 2013.
-
Abstract
- The problem of detecting community structures of a social network has been extensively studied over recent years, but most existing methods solely rely on the network structure and neglect the context information of the social relations. The main reason is that a context-rich network offers too much flexibility and complexity for automatic or manual modulation of the multifaceted context in the analysis process. We address the challenging problem of incorporating context information into the community analysis with a novel visual analysis mechanism. Our approach consists of two stages: interactive discovery of salient context, and iterative context-guided community detection. Central to the analysis process is a context relevance model (CRM) that visually characterizes the influence of a given set of contexts on the variation of the detected communities, and discloses the community structure in specific context configurations. The extracted relevance is used to drive an iterative visual reasoning process, in which the community structures are progressively discovered. We introduce a suite of visual representations to encode the community structures, the context as well as the CRM. In particular, we propose an enhanced parallel coordinates representation to depict the context and community structures, which allows for interactive data exploration and community investigation. Case studies on several datasets demonstrate the efficiency and accuracy of our approach.
- Subjects :
- Flexibility (engineering)
Context model
Social network
Process (engineering)
Computer science
business.industry
Context (language use)
Visual reasoning
Machine learning
computer.software_genre
Social relation
Computer Science Applications
Theoretical Computer Science
Computational Theory and Mathematics
Hardware and Architecture
Relevance (information retrieval)
Artificial intelligence
business
computer
Software
Subjects
Details
- ISSN :
- 18604749 and 10009000
- Volume :
- 28
- Database :
- OpenAIRE
- Journal :
- Journal of Computer Science and Technology
- Accession number :
- edsair.doi...........6fc4e31a21d3586803a600c0b166554e