Back to Search
Start Over
Comparison of BP and GRNN Algorithm for Factory Monitoring
- Source :
- Applied Mechanics and Materials. :2105-2110
- Publication Year :
- 2011
- Publisher :
- Trans Tech Publications, Ltd., 2011.
-
Abstract
- Artificial neural networks (ANNs) are one of the most recently explored advanced technologies which show promise in the factory monitoring area. This paper focuses on two particular network models, back-propagation network (BPN) and general regression neural network (GRNN). The prediction accuracy of these two models is evaluated using a practical application situation in a monitor factory. GRNN emerged as a variant of the artificial neural network. Its principal advantages are that it can quickly learn and rapidly converge to the optimal regression surface with large number of data sets. According the simulation results we can show that GRNN is an effective way to considerably improve the predictive ability of BPN.
- Subjects :
- Engineering
Artificial neural network
business.industry
Principal (computer security)
General Medicine
Machine learning
computer.software_genre
Regression
General regression neural network
Factory (object-oriented programming)
Artificial intelligence
Data mining
business
computer
Network model
Subjects
Details
- ISSN :
- 16627482
- Database :
- OpenAIRE
- Journal :
- Applied Mechanics and Materials
- Accession number :
- edsair.doi...........6fae3d405e8c1e921c62422c2bcc7ae4