Back to Search Start Over

Propagation of Liquid Plugs With Yield Stress in Human Airways

Authors :
Shuichi Takayama
James B. Grotberg
Parsa Zamankhan
Source :
ASME 2010 Summer Bioengineering Conference, Parts A and B.
Publication Year :
2010
Publisher :
American Society of Mechanical Engineers, 2010.

Abstract

The airway closure due to the capillary instability [1] occurs in lung diseases such as asthma, cystic fibrosis, or emphysema. The reopening process involves with displacement of plugs constituted from mucus, a non-Newtonian fluid with a yield stress, in the airways. In this work the steady propagation of mucus plugs in a 2D channel is studied numerically, assuming that the mucus is a Bingham fluid. The governing equations are solved by a mixed-discontinuous finite element formulation and the free surface is resolved with the method of spines. The constitutive equation for Bingham fluid is implemented through a regularized constitutive equation. According to the numerical results, the yield stress behavior of the plug modifies the plug shape, the pattern of the streamlines and the distribution of stresses in the plug domain and along the walls in a significant way. The distribution along the walls is a major factor in studying cell injuries.Copyright © 2010 by ASME

Details

Database :
OpenAIRE
Journal :
ASME 2010 Summer Bioengineering Conference, Parts A and B
Accession number :
edsair.doi...........6f5408586ed142c2312b3271d2cc2da7
Full Text :
https://doi.org/10.1115/sbc2010-19426