Back to Search Start Over

Superluminous supernovae:56Ni power versus magnetar radiation

Authors :
D. John Hillier
Luc Dessart
Stephane Blondin
Eli Livne
Roni Waldman
Source :
Monthly Notices of the Royal Astronomical Society: Letters. 426:L76-L80
Publication Year :
2012
Publisher :
Oxford University Press (OUP), 2012.

Abstract

Much uncertainty surrounds the origin of super-luminous supernovae (SNe). Motivated by the discovery of the Type Ic SN2007bi, we study its proposed association with a pair-instability SN (PISN). We compute stellar-evolution models for primordial ~200Msun stars, simulating the implosion/explosion due to the pair-production instability, and use them as inputs for detailed non-LTE time-dependent radiative-transfer simulations that include non-local energy deposition and non-thermal processes. We retrieve the basic morphology of PISN light curves from red-supergiant, blue-supergiant, and Wolf-Rayet (WR) star progenitors. Although we confirm that a progenitor 100Msun helium core (PISN model He100) fits well the SN2007bi light curve, the low ratios of its kinetic energy and 56Ni mass to the ejecta mass, similar to standard core-collapse SNe, conspire to produce cool photospheres, red spectra subject to strong line blanketing, and narrow line profiles, all conflicting with SN2007bi observations. He-core models of increasing 56Ni-to-ejecta mass ratio have bluer spectra, but still too red to match SN2007bi, even for model He125 -- the effect of 56Ni heating is offset by the associated increase in blanketing. In contrast, the delayed injection of energy by a magnetar represents a more attractive alternative to reproduce the blue, weakly-blanketed, and broad-lined spectra of super-luminous SNe. The extra heat source is free of blanketing and is not explicitly tied to the ejecta. Experimenting with a ~9Msun WR-star progenitor, initially exploded to yield a ~1.6B SN Ib/c ejecta but later influenced by tunable magnetar-like radiation, we produce a diversity of blue spectral morphologies reminiscent of SN2007bi, the peculiar Type Ib SN2005bf, and super-luminous SN2005ap-like events.

Details

ISSN :
17453925
Volume :
426
Database :
OpenAIRE
Journal :
Monthly Notices of the Royal Astronomical Society: Letters
Accession number :
edsair.doi...........6efb9084b6d4b80daec55b3a681f44fe