Back to Search Start Over

Synthesis of acetic acid from CO2, CH3I and H2 using a water-soluble electron storage catalyst

Authors :
Kazuki Kamitakahara
Takahiro Matsumoto
Ki Seok Yoon
Seiji Ogo
Tatsuya Ando
Takeshi Yatabe
Takao Enomoto
Kaede Higashijima
Source :
Chemical Communications. 57:4772-4774
Publication Year :
2021
Publisher :
Royal Society of Chemistry (RSC), 2021.

Abstract

This paper reports a possible mechanism of acetic acid formation from CO2, CH3I and H2 in aqueous media and the central role played by a water-soluble Rh-based electron storage catalyst. In addition to water-solubility, we also report the crystal structures of two presumed intermediates. These findings together reveal (1) the advantage of water, not only as a green solvent, but also as a reactive Lewis base to extract H+ from H2, (2) the role of the metal (Rh) centre as a point for storing electrons from H2 and (3) the importance of an electron-withdrawing ligand (quaterpyridine, qpy) that supports electron storage.

Details

ISSN :
1364548X and 13597345
Volume :
57
Database :
OpenAIRE
Journal :
Chemical Communications
Accession number :
edsair.doi...........6ef33aad8bf5cbe3870c5ff697ed3800