Back to Search Start Over

Crystallography and elastic anisotropy in fatigue crack nucleation at nickel alloy twin boundaries

Authors :
Xiaoxian Zhang
Tresa M. Pollock
Fionn P.E. Dunne
Jean Charles Stinville
Source :
Journal of the Mechanics and Physics of Solids. 155:104538
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

Fatigue crack nucleation at annealing twin boundaries (TBs) within polycrystal nickel-based superalloy Rene 88 D T is investigated with a microstructure-sensitive crystal plasticity (CP) model, digital image correlation strain measurements and experimental SEM crack nucleation observations. Strong slip localizations at TBs were experimentally observed and predicted by the CP model, which also showed high predicted geometrically necessary dislocation and corresponding stored energy densities, capturing experimental observations of crack nucleation. In a systematic study, elastic anisotropy was found to drive local elastic constraint and hence resolved shear stress, slip activation, GND density and stored energy density, demonstrating for this reason that TBs are preferential sites for crack nucleation in this alloy. The parent grain / twin pair crystallographic orientation with respect to remote loading was also demonstrated to be key to slip activation parallel to TBs and hence to stored energy density and fatigue crack nucleation, and the range of most damaging parent grain orientations has been identified.

Details

ISSN :
00225096
Volume :
155
Database :
OpenAIRE
Journal :
Journal of the Mechanics and Physics of Solids
Accession number :
edsair.doi...........6dc288d0b6fb747d273210af79273967
Full Text :
https://doi.org/10.1016/j.jmps.2021.104538