Back to Search
Start Over
Entropy theory for sectional hyperbolic flows
- Source :
- Annales de l'Institut Henri Poincaré C, Analyse non linéaire. 38:1001-1030
- Publication Year :
- 2021
- Publisher :
- European Mathematical Society - EMS - Publishing House GmbH, 2021.
-
Abstract
- We use entropy theory as a new tool to study sectional hyperbolic flows in any dimension. We show that for C 1 flows, every sectional hyperbolic set Λ is entropy expansive, and the topological entropy varies continuously with the flow. Furthermore, if Λ is Lyapunov stable, then it has positive entropy; in addition, if Λ is a chain recurrent class, then it contains a periodic orbit. As a corollary, we prove that for C 1 generic flows, every Lorenz-like class is an attractor.
- Subjects :
- Lyapunov function
Pure mathematics
Mathematics::Dynamical Systems
Applied Mathematics
010102 general mathematics
Topological entropy
01 natural sciences
symbols.namesake
Positive entropy
Corollary
Hyperbolic set
0103 physical sciences
Attractor
symbols
Periodic orbits
Entropy (information theory)
010307 mathematical physics
0101 mathematics
Mathematical Physics
Analysis
Mathematics
Subjects
Details
- ISSN :
- 18731430 and 02941449
- Volume :
- 38
- Database :
- OpenAIRE
- Journal :
- Annales de l'Institut Henri Poincaré C, Analyse non linéaire
- Accession number :
- edsair.doi...........6dadf3eb08e5468db564e5f52d603678