Back to Search Start Over

Multi-Resolution Dynamic Programming for the Receding Horizon Control of Energy Storage

Authors :
Julian de Hoog
Saman K. Halgamuge
Kent C. Steer
Khalid Abdulla
Andrew Wirth
Source :
IEEE Transactions on Sustainable Energy. 10:333-343
Publication Year :
2019
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2019.

Abstract

A multi-resolution approach to dynamic programming is presented, which reduces the computational effort of solving multistage optimization problems with long horizons and short decision intervals. The approach divides an optimization horizon into a series of subhorizons, discretized at different state space and temporal resolutions, enabling a reduced computational complexity compared to a single-resolution approach. The method is applied to optimizing the operation of a residential energy storage system, using real 1-min demand and rooftop PV generation data. The multi-resolution approach reduces the required computation time, allowing optimization to be rerun more frequently, increasing the robustness of the receding-horizon-control approach to forecast errors. In an empirical study, this increases the cost-saving offered by a 2 kWh behind-the-meter battery energy storage system by 120% on average, compared to an approach using a single fine-grained resolution.

Details

ISSN :
19493037 and 19493029
Volume :
10
Database :
OpenAIRE
Journal :
IEEE Transactions on Sustainable Energy
Accession number :
edsair.doi...........6d80a5a112c07b3cc93311d0d8aba322