Back to Search Start Over

Basic Principles of Hybrid High-Order Methods: The Poisson Problem

Authors :
Jérôme Droniou
Daniele Antonio Di Pietro
Source :
The Hybrid High-Order Method for Polytopal Meshes ISBN: 9783030372026
Publication Year :
2020
Publisher :
Springer International Publishing, 2020.

Abstract

In this chapter we introduce the main ideas underlying HHO methods, using to this purpose the Poisson problem: Find \(u:\Omega \to \mathbb {R}\) such that $$\displaystyle \begin{aligned} \begin{array}{rcl} -{\Delta} u &= f \qquad \text{in}\ \Omega, \\ u &= 0 \qquad \text{on}\ \partial\Omega, \end{array} \end{aligned}$$ where Ω is an open bounded polytopal subset of \(\mathbb {R}^n\), n ≥ 2, with boundary ∂ Ω and \(f:\Omega \to \mathbb {R}\) is a given volumetric source term, assumed to be in L2( Ω).

Details

ISBN :
978-3-030-37202-6
ISBNs :
9783030372026
Database :
OpenAIRE
Journal :
The Hybrid High-Order Method for Polytopal Meshes ISBN: 9783030372026
Accession number :
edsair.doi...........6d467229d0205390fb3bdd4a36c07ea8
Full Text :
https://doi.org/10.1007/978-3-030-37203-3_2