Back to Search Start Over

Functional analysis of diacylglycerol acyltransferase1 genes from Camelina sativa and effects of CsDGAT1B overexpression on seed mass and storage oil content in C. sativa

Authors :
Hyojin Kim
Da Jung Kim
Augustine Yonghwi Kim
Mi Chung Suh
Ji Hyun Park
Source :
Plant Biotechnology Reports. 10:141-153
Publication Year :
2016
Publisher :
Springer Science and Business Media LLC, 2016.

Abstract

Camelina (Camelina sativa), which belongs to the Brassicaeae family, is an emerging oilseed crop with the potential to expand biodiesel production to arid land. During storage oil synthesis, diacylglycerol acyltrasferase1 (DGAT1) catalyzes the conversion of diacylglycerol (DAG) and free fatty acids to triacylglycerol (TAG). In this study, three DGAT1 genes (CsDGAT1A, CsDGAT1B, and CsDGAT1C) were isolated from developing C. sativa seeds. The deduced amino acid sequences of the three CsDGAT1 genes shared more than 84 % identity with those of DGAT1 genes from Arabidopsis thaliana and Brassica napus. CsDGAT1A, B, and C transcripts were detected in various C. sativa organs, including developing seeds. Fluorescent protein-fused CsDGAT1A, B, and C were localized in the endoplasmic reticulum (ER) of tobacco epidermal cells. When the CsDGAT1A, B, and C genes under the control of the BnNapin promoter were expressed in an Arabidopsis AS11 mutant, which is defective in DGAT1, the amounts and composition of total fatty acids in dry seeds were restored to those of the wild type, indicating the three CsDGAT1 genes to be functionally active. In transgenic C. sativa plants overexpressing CsDGAT1B, the levels of total seed oils were increased by ~24 % compared with non-transgenic lines. Transgenic C. sativa embryos with enhanced seed oil contents harbored larger embryonic cells and a greater number of cells compared with the wild type. Transgenic Camelina plants with increased oil contents can be used as renewable resources for the production of biodiesel and non-petroleum-based biomaterials.

Details

ISSN :
18635474 and 18635466
Volume :
10
Database :
OpenAIRE
Journal :
Plant Biotechnology Reports
Accession number :
edsair.doi...........6d2d007eba5a61c2f8ba28ae8a8346bf
Full Text :
https://doi.org/10.1007/s11816-016-0394-7