Back to Search Start Over

Multiphoton ionization spectroscopy of organometallics: The Cr(CO)6, Cr(CO)3C6H6, Cr(C6H6)2 series

Authors :
Melvin B. Robin
N. A. Kuebler
A. Gedanken
T. S. Eichelberger
G. J. Fisanick
Source :
The Journal of Chemical Physics. 75:5215-5225
Publication Year :
1981
Publisher :
AIP Publishing, 1981.

Abstract

The multiphoton ionization (MPI) spectra of the title compounds have been studied in the 3533–6000 A region in an effort to elucidate the fragmentation and ionization pathways. At wavelengths longer than 4000 A, the compounds dissociate more rapidly than they are ionized, thereby forming Cr(I) which then can be ionized in a (2+1) resonant process. The resonance wavelengths are identical in the three compounds, and only Cr+ is observed in the MPI‐produced mass spectra. At wavelengths shorter than 4000 A, both Cr+ and CrO+ appear in the mass spectra of Cr(CO)6 and Cr(CO)3C6H6. Surprisingly, however, no ionization of the unbound ligands was observed in any of the complexes studied. Electron time‐of‐flight measurements in Cr(CO)6 show that at wavelengths shorter than 4000 A ionization of the parent–molecule resonant state and fragmentation to neutrals with eventual ionization of Cr(I) are important ionization paths. The observation of severe ac Stark broadening of the Cr(I) MPI resonances implies that a rate‐equation approach to ion production will be inadequate, except at very low flux. Additionally, the exclusive production of Cr+ indicates extremely rapid dissociation of the intermediate molecular fragments. The breakdown of the rate‐equation approach leads to effective power exponents which are smaller than those required by the known Cr+ mass‐spectrometric appearance potentials; this indeed is found experimentally. The branching ratios for production of various excited states of Cr(I) are dependent upon the precursor molecule and the incident laser flux.

Details

ISSN :
10897690 and 00219606
Volume :
75
Database :
OpenAIRE
Journal :
The Journal of Chemical Physics
Accession number :
edsair.doi...........6d0e35db14a736d709bfcb6b61fff55e
Full Text :
https://doi.org/10.1063/1.441985