Back to Search Start Over

Human Umbilical Cord Blood Stem Cell Function Is Augmented by Exposure to Prostaglandin E2

Authors :
Joseph Stegner
Myriam Armant
Michael C Dovey
Xiao Guan
Thorsten M. Schlaeger
Leonard I. Zon
Wolfram Goessling
Trista E. North
Source :
Blood. 114:369-369
Publication Year :
2009
Publisher :
American Society of Hematology, 2009.

Abstract

Abstract 369 Hematopoietic stem cells (HSCs) comprise the base of the entire hematopoietic system and alone possess the ability to both self-renew and differentiate into all mature blood lineages, thereby maintaining immune function, tissue perfusion and hematopoietic homeostasis. HSCs are therapeutically valuable for the treatment of hematological malignances, immunodeficiencies and bone marrow failure. Prostaglandin (PG) E2 has been shown to enhance HSC engraftment in allogeneic murine transplantation models by our lab (North et al., Nature 2007) and others (Hoggatt et al., Blood 2009); PGE2 was additionally found to influence the balance of apoptosis and proliferation in the HSC population via modulation of wnt activity (Goessling et al., Cell 2009), and to modify CXCR4-responsive homing to the hematopoietic niche following transplantation (Hoggatt et al., Blood 2009). In order to translate the therapeutic potential of a stabilized version of PGE2, dmPGE2, we sought to determine the safety and efficacy of ex vivo dmPGE2 exposure in human cord blood (hCB) stem cells. Compared to matched control cord samples, no significant negative impact on hCB cell viability was observed following dmPGE2 treatment (10?M for 1 hour) using either fresh or frozen cord blood units; of note, the CD34+ stem and progenitor compartment seemed particularly able to tolerate the treatment protocol. To determine whether dmPGE2 treatment was not only safe, but potentially valuable for preserving hCB cell viability, apoptosis was measured by FACS analysis for 7AAD and AnnexinV in pooled CD34-enriched (CD34+) hCB samples treated in parallel with 1?M dmPGE2 or the vehicle control (DMSO); at 6 and 9 hours post exposure, cells treated with dmPGE2 showed a significant reduction in apoptosis compared to controls. Cell proliferation assays confirmed results seen in prior murine studies and demonstrated that dmPGE2 not only suppressed apoptosis, but enhanced HSC self-renewal. To determine if dmPGE2 exposure altered the functional characteristics of human cord blood samples, in vitro culture assays were conducted; pooled CD34+ samples were exposed over a time series (12 and 30 mins, 1, 3, 6 and 12 hours) to the vehicle control and dmPGE2 (1?M) then plated at limiting dilutions (2000, 800, 320). A significant 2-fold enhancement in total colony number (p Disclosures: Goessling: Fate Therapeutics: Consultancy, Patents & Royalties. Zon:FATE Inc: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Stemgent: Consultancy. North:Fate Therapeutics: Consultancy, Patents & Royalties.

Details

ISSN :
15280020 and 00064971
Volume :
114
Database :
OpenAIRE
Journal :
Blood
Accession number :
edsair.doi...........6cdd7585da092dcd5d2590bdd11df1df
Full Text :
https://doi.org/10.1182/blood.v114.22.369.369