Back to Search Start Over

Reactions of doubly deprotonated 2,6-naphthalenedicarboxylic acid with alcohols: Proton transfer versus solvation

Authors :
Richard A. J. O'Hair
Jacob Schmidt
Matthew M. Meyer
Alireza Fattahi
Steven R. Kass
George N. Khairallah
Source :
International Journal of Mass Spectrometry. 418:180-187
Publication Year :
2017
Publisher :
Elsevier BV, 2017.

Abstract

Electrospray ionization of 2,6-naphthalenedicarboxylic acid readily affords its doubly deprotonated dicarboxylate dianion (12−). This species clusters with background water and added alcohols in an ion trap at ∼10−3 Torr. Sequential solvation is observed to afford mono and dicoordinated ions. Surprisingly, the latter cluster (12−• 2TFE) is protonated by 2,2,2-trifluoroethanol (TFE) whereas 12−and 12−• TFE are not even though ΔH°acid(TFE) = 361.7 ± 2.5 kcal mol−1 (as given in the NIST website at http://webbook.nist.gov) and the B3LYP/6-31+G(d,p) proton affinities are 384.7 (12−), 377.6 (12−• TFE), and 362.7 (12−• 2TFE) kcal mol−1. That is, only the weakest base in this series, and the dianion with an equal number of solvent molecules and charged sites, undergoes proton transfer. In a FTMS instrument at lower pressures (∼10−8 Torr) inefficient proton abstraction is observed with the monosolvated dianion. This difference, and the observed reactivities of 12−, 12−• TFE and 12−• 2TFE are rationalized with the aid of computed potential energy surfaces. The chemical structures of these cluster ions were also probed via collision-induced dissociations, infrared photodissociation from 2700 to 3200 cm−1, and extensive calculations. All of the TFE species are found to be solvated dianions, but incipient proton transfer to afford electrostatically defying anion-anion clusters is noted in two cases. In proton transfer reactions, formation of the conjugate acid as a solvated ion lowers the energy of the system and reduces the Coulomb repulsion barrier facilitating the overall process.

Details

ISSN :
13873806
Volume :
418
Database :
OpenAIRE
Journal :
International Journal of Mass Spectrometry
Accession number :
edsair.doi...........6c43e84340f492980affdc5a27ef7e5c