Back to Search Start Over

Evaluation of deep learning methods for early gastric cancer detection using gastroscopic images

Authors :
Xiufeng Su
Qingshan Liu
Xiaozhong Gao
Liyong Ma
Source :
Technology and Health Care. 31:313-322
Publication Year :
2023
Publisher :
IOS Press, 2023.

Abstract

BACKGROUND: A timely diagnosis of early gastric cancer (EGC) can greatly reduce the death rate of patients. However, the manual detection of EGC is a costly and low-accuracy task. The artificial intelligence (AI) method based on deep learning is considered as a potential method to detect EGC. AI methods have outperformed endoscopists in EGC detection, especially with the use of the different region convolutional neural network (RCNN) models recently reported. However, no studies compared the performances of different RCNN series models. OBJECTIVE: This study aimed to compare the performances of different RCNN series models for EGC. METHODS: Three typical RCNN models were used to detect gastric cancer using 3659 gastroscopic images, including 1434 images of EGC: Faster RCNN, Cascade RCNN, and Mask RCNN. RESULTS: The models were evaluated in terms of specificity, accuracy, precision, recall, and AP. Fast RCNN, Cascade RCNN, and Mask RCNN had similar accuracy (0.935, 0.938, and 0.935). The specificity of Cascade RCNN was 0.946, which was slightly higher than 0.908 for Faster RCNN and 0.908 for Mask RCNN. CONCLUSION: Faster RCNN and Mask RCNN place more emphasis on positive detection, and Cascade RCNN places more emphasis on negative detection. These methods based on deep learning were conducive to helping in early cancer diagnosis using endoscopic images.

Details

ISSN :
18787401 and 09287329
Volume :
31
Database :
OpenAIRE
Journal :
Technology and Health Care
Accession number :
edsair.doi...........6bf698772f63e687039e81caac554cea