Back to Search
Start Over
The chemical, mechanical, and hydrological evolution of weathering granitoid
- Source :
- Journal of Geophysical Research: Earth Surface. 121:1410-1435
- Publication Year :
- 2016
- Publisher :
- American Geophysical Union (AGU), 2016.
-
Abstract
- Surprisingly few studies connect the chemical, mechanical, and hydrological evolution of rock as it weathers to saprolite and soil. We assess this coevolution in granodiorite from Monterey Peninsula, California, by measuring changes in bulk chemistry, mineralogy, volumetric strain, the oxidation state of Fe in biotite crystals, tensile strength, abrasion rate, connected porosity, and hydraulic conductivity in samples covering a range of weathering grades. We identify the oxidative dissolution of biotite as the key chemical reaction because of the volumetric expansion that accompanies formation of altered biotite and precipitation of ferrihydrite. We show how the associated accumulation of elastic strain produces an energy density that is sufficient to support rock fracturing over length scales equivalent to constituent crystals. The resulting intragranular and intergranular cracking profoundly reduces tensile strength and increases the abrasion rate, connected porosity, and hydraulic conductivity of the rock matrix. These changes increase the rate of plagioclase weathering, and ultimately the rock disintegrates into grus and clay. Major changes in rock properties can occur with only minor element leaching, and the threshold behavior of weathering that arises from the coevolution of chemical, hydrological, and mechanical properties may be difficult to capture using simplified weathering models that fail to incorporate these properties. Our results, which combine the mechanical and hydrological evolution of weathering rock with more common measurements of chemical changes, should help to more accurately model the effects of, and mechanical and hydrological feedbacks upon, chemical weathering of rock.
- Subjects :
- 010504 meteorology & atmospheric sciences
Soil production function
Grus (geology)
Mineralogy
Weathering
engineering.material
Saprolite
010502 geochemistry & geophysics
01 natural sciences
Abrasion (geology)
Geophysics
Hydraulic conductivity
Spheroidal weathering
engineering
Geotechnical engineering
Biotite
Geology
0105 earth and related environmental sciences
Earth-Surface Processes
Subjects
Details
- ISSN :
- 21699003
- Volume :
- 121
- Database :
- OpenAIRE
- Journal :
- Journal of Geophysical Research: Earth Surface
- Accession number :
- edsair.doi...........6b9df28889c429a5dacaca54b570d1dd