Back to Search Start Over

Development and Validation of a 18F-FDG PET/CT-Based Clinical Prediction Model for Estimating Malignancy in Solid Pulmonary Nodules Based on a Population With High Prevalence of Malignancy

Authors :
Wei-Ping Xu
Hao-Yue Guo
Hong-Hong Yan
Yuan Gao
Jun-Tao Lin
Hao-Hua Huang
Mei-Ru Yan
Wen-Zhao Zhong
Ming Sun
Xue-Ning Yang
Source :
Clinical Lung Cancer. 21:47-55
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

Purpose To develop a prediction model based on 18F-fludeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) for solid pulmonary nodules (SPNs) with high malignant probability. Patients and Methods We retrospectively reviewed the records of CT-undetermined SPNs, which were further evaluated by PET/CT between January 2008 and December 2015. A total of 312 cases were included as a training set and 159 as a validation set. Logistic regression was applied to determine independent predictors, and a mathematical model was deduced. The area under the receiver operating characteristic curve (AUC) was compared to other models. Model fitness was assessed based on the American College of Chest Physicians guidelines. Results There were 215 (68.9%) and 127 (79.9%) malignant lesions in the training and validation sets, respectively. Eight independent predictors were identified: age [odds ratio (OR) = 1.030], male gender (OR = 0.268), smoking history (OR = 2.719), lesion diameter (OR = 1.067), spiculation (OR = 2.530), lobulation (OR = 2.614), cavity (OR = 2.847), and standardized maximum uptake value of SPNs (OR = 1.229). Our AUCs (training set, 0.858; validation set, 0.809) was better than those of previous models (Mayo: 0.685, P = .0061; Peking University People’s Hospital: 0.646, P = .0180; Herder: 0.708, P = .0203; Zhejiang University: 0.757, P = .0699). The C index of the nomogram was 0.858. Our model reduced the diagnosis of indeterminate nodules (26.4% vs. 79.2%, 53.5%, 39.6%, and 34.0%, respectively) while improved sensitivity (81.3% vs. 16.4%, 49.2%, 62.5%, and 68.0%, respectively) and accuracy (65.4% vs. 16.4%, 39.6%, 52.8%, and 58.5%, respectively). Conclusion Our model could permit accurate diagnoses and may be recommended to identify malignant SPNs with high malignant probability, as our data pertain to a very high-prevalence cohort only.

Details

ISSN :
15257304
Volume :
21
Database :
OpenAIRE
Journal :
Clinical Lung Cancer
Accession number :
edsair.doi...........6b968cb272d3c2d872f9ba06cb740153