Back to Search Start Over

Creep rupture assessment for Level-2 PSA of a 2-loop PWR: accounting for phenomenological uncertainties

Authors :
Kaveh Karimi
Seyed Mojtaba Hoseyni
Seyed Ali Hashemi Olia
Seyed Mohsen Hoseyni
Faramarz Yousefpour
Source :
Nuclear Science and Techniques. 28
Publication Year :
2017
Publisher :
Springer Science and Business Media LLC, 2017.

Abstract

The Level-2 probabilistic safety assessment (PSA) of pressurized water reactors studies the possibility of creep rupture for major reactor coolant system components during the course of high pressure severe accident sequences. The present paper covers this technical issue and tries to quantify its associated phenomenological uncertainties for the development of Level-2 PSA. A framework is proposed for the formal quantification of uncertainties in the Level-2 PSA model of a PWR type nuclear power plant using an integrated deterministic and PSA approach. This is demonstrated for estimation of creep rupture failure probability in station blackout severe accident of a 2-loop PWR, which is the representative case for high pressure sequences. MELCOR 1.8.6 code is employed here as the deterministic tool for the assessment of physical phenomena in the course of accident. In addition, a MATLAB code is developed for quantification of the probabilistic part by treating the uncertainties through separation of aleatory and epistemic sources of uncertainty. The probability for steam generator tube creep rupture is estimated at 0.17.

Details

ISSN :
22103147 and 10018042
Volume :
28
Database :
OpenAIRE
Journal :
Nuclear Science and Techniques
Accession number :
edsair.doi...........6b0be101797247f4ee07c698c762d359
Full Text :
https://doi.org/10.1007/s41365-017-0269-9