Back to Search
Start Over
SMOS near real time soil moisture product: processor overview and first validation results
- Publication Year :
- 2017
- Publisher :
- Copernicus GmbH, 2017.
-
Abstract
- Measurements of the surface soil moisture (SM) content are important for a wide range of applications. Among them, operational hydrology and numerical weather prediction, for instance, need soil moisture information in near-real-time (NRT), typically not later than 3 hours after sensing. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite is the first mission specifically designed to measure soil moisture from space. The ESA level 2 SM retrieval algorithm is based on a detailed geophysical modelling and cannot provide SM in NRT. This paper presents the new ESA SMOS NRT SM product. It uses a neural network (NN) to provide SM in NRT. The NN inputs are SMOS brightness temperatures for horizontal and vertical polarizations and incidence angles from 30º to 45º. In addition, the NN uses surface soil temperature from the European Centre for Medium Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS). The NN was trained on SMOS Level 2 SM. The swath of the NRT SM retrieval is somewhat narrower (~ 915 km) than that of the L2 SM dataset (~ 1150 km), which implies a slightly lower revisit time. The new SMOS NRT SM product was compared to the SMOS Level 2 SM product. The NRT SM data shows a standard deviation of the difference with respect to the L2 data of
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........6b05609be846ac9996da74c665fa5dd8
- Full Text :
- https://doi.org/10.5194/hess-2017-211