Back to Search Start Over

Thermal and vibrational characterization of human skin

Authors :
Florence Nadal-Wollbold
Christiane Casas
Anne-Marie Schmitt
Jany Dandurand
Valérie Samouillan
Colette Lacabanne
Rong Tang
Source :
Journal of Thermal Analysis and Calorimetry. 127:1143-1154
Publication Year :
2016
Publisher :
Springer Science and Business Media LLC, 2016.

Abstract

For a better understanding of the molecular and organizational changes in human dermis, biophysical methods were tested. The aim of this study was to find suitable and reproducible biomarkers for further clinical studies on intrinsic and extrinsic aging of dermis. Thermoporometry, hydric organization and thermal transitions of fresh and frozen skins were determined by differential scanning calorimetry (DSC). Fourier transform infrared spectroscopy (FTIR) was used to identify the absorption bands of the dermis especially in the 1800–1000 cm−1 zone and to discriminate between the different secondary structures of proteins. A widening of the pore size distribution is evidenced with freezing, but there is no significant difference between the hydric organization and the endothermic collagen denaturation of fresh and frozen skins. The global FTIR spectra and the second derivative spectra in the scanned zone are also identical in fresh and frozen dermis, validating the storage protocol. DSC and FTIR are well-suited techniques to characterize human skin, giving accurate results with high reproducibility. The acquisition of thermal and vibrational biomarkers of the skin at the mesoscale and nanoscale contributes to its better knowledge and is promising for further studies on skin aging.

Details

ISSN :
15882926 and 13886150
Volume :
127
Database :
OpenAIRE
Journal :
Journal of Thermal Analysis and Calorimetry
Accession number :
edsair.doi...........6abeb44829c9e9073bfbefbd001bdb7c
Full Text :
https://doi.org/10.1007/s10973-016-5384-z