Back to Search Start Over

Low-temperature hydrothermal Pt mineralization in uvarovite-bearing ophiolitic chromitites from the Dominican Republic

Authors :
Joaquín A. Proenza
Thomas Aiglsperger
Cristina Domènech
Júlia Farré-de-Pablo
Antonio García-Casco
Lisard Torró
José María González-Jiménez
Source :
Mineralium Deposita. 57:955-976
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

Platinum-group elements (PGEs) occur in ophiolitic chromitite in the Dominican Republic as platinum-group minerals (PGMs) in spatial association with hydrothermal uvarovite and chromian clinochlore. Bulk-rock total PGE content in a single analyzed chromitite sample is of 6.54 g/t. Three main PGM types are distinguished: euhedral magmatic laurite completely encased in chromite, subhedral to euhedral Ru-Os-Fe-(Ir) compounds partially encased in chromite, and anhedral Pt-Fe–Ni-rich grains exclusively embedded in uvarovite or chromian clinochlore. The Ru-Os-Fe-(Ir) compounds are interpreted as magmatic Ru-Os sulfides that experienced desulfurization during hydrothermal alteration of the chromitites, whereas the Pt-Fe–Ni-rich grains are hydrothermal in origin. We propose a model in which the Pt-Fe–Ni-rich PGMs formed via the accumulation of nanoparticles directly precipitated from the hydrothermal fluids. An estimation of the temperature of crystallization of uvarovite and chromian clinochlore suggests hydrothermal alteration of the chromitite within the thermal range of 150–350 °C. Thermodynamic modeling shows that, within this range of temperature, Pt could be mobilized as aqueous bisulfide complexes (HS−) by S-poor, highly reducing hydrothermal fluids originated during serpentinization of the host chromitite rock. The crystallization of Ni sulfides in the chromitite would drop the S concentration of the fluid, causing the precipitation of Pt as native element. Ultimately, this process contributes to constrain the conditions for the genesis of hydrothermal PGE mineralizations in ophiolitic chromitites.

Details

ISSN :
14321866 and 00264598
Volume :
57
Database :
OpenAIRE
Journal :
Mineralium Deposita
Accession number :
edsair.doi...........6a2448cf4d1b31f7a4195d1cc157f7e4