Back to Search
Start Over
A novel, integrated forensic microdevice on a rotation-driven platform: Buccal swab to STR product in less than 2 h
- Source :
- ELECTROPHORESIS. 37:3046-3058
- Publication Year :
- 2016
- Publisher :
- Wiley, 2016.
-
Abstract
- This work describes the development of a novel microdevice for forensic DNA processing of reference swabs. This microdevice incorporates an enzyme-based assay for DNA preparation, which allows for faster processing times and reduced sample handling. Infrared-mediated PCR (IR-PCR) is used for STR amplification using a custom reaction mixture, allowing for amplification of STR loci in 45 min while circumventing the limitations of traditional block thermocyclers. Uniquely positioned valves coupled with a simple rotational platform are used to exert fluidic control, eliminating the need for bulky external equipment. All microdevices were fabricated using laser ablation and thermal bonding of PMMA layers. Using this microdevice, the enzyme-mediated DNA liberation module produced DNA yields similar to or higher than those produced using the traditional (tube-based) protocol. Initial microdevice IR-PCR experiments to test the amplification module and reaction (using Phusion Flash/SpeedSTAR) generated near-full profiles that suffered from interlocus peak imbalance and poor adenylation (significant -A). However, subsequent attempts using KAPA 2G and Pfu Ultra polymerases generated full STR profiles with improved interlocus balance and the expected adenylated product. A fully integrated run designed to test microfluidic control successfully generated CE-ready STR amplicons in less than 2 h (
- Subjects :
- 0301 basic medicine
Sample handling
Materials science
010401 analytical chemistry
Clinical Biochemistry
Buccal swab
Microfluidics
Analytical chemistry
Amplicon
01 natural sciences
Biochemistry
DNA extraction
0104 chemical sciences
Analytical Chemistry
03 medical and health sciences
Forensic dna
030104 developmental biology
Str loci
Fluidics
Biomedical engineering
Subjects
Details
- ISSN :
- 01730835
- Volume :
- 37
- Database :
- OpenAIRE
- Journal :
- ELECTROPHORESIS
- Accession number :
- edsair.doi...........69f106d0351881143ef62d419039ff62
- Full Text :
- https://doi.org/10.1002/elps.201600307